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ABSTRACT 
For large populations of vehicles, it is often difficult to estimate how 

changes to scheduled maintenance plans will impact future operational 

availability, especially when component failure rates may not be known precisely 

or the operational environment changes.  The primary objective of this contribution 

is to illustrate a Modeling and Simulation (M&S) approach which determines the 

minimum amount of maintenance necessary to keep a given threshold of 

operational availability.  The analysis was performed using discrete-event 

simulation, maintenance data, and anecdotal information from technicians.  The 

information was combined within a model containing over 15 variables including 

labor and process constraints.  The analysis yielded a decision tool that can be 

utilized to assess several potential long term storage maintenance policies, focused 

on cost minimization while meeting readiness requirements.   

 

INTRODUCTION 
For large populations of vehicles, it is often 

difficult to estimate how changes to scheduled 

maintenance plans may impact future operational 

availability, especially when the underlying 

component failure rate is unknown or if the 

operating environment changes. Processes such as 

Reliability-Centered Maintenance (RCM) exist to 

iteratively optimize a maintenance plan over time, 

but RCM will not provide detailed estimates of 

operational availability, nor does it provide a 

convenient way to assess all the indirect costs of 

alternative maintenance plans. To minimize cost, it 

is often desirable to determine the minimum 

amount of maintenance necessary to ensure a given 

threshold of availability. Analytical methods can be 

utilized to optimize the associated maintenance 

intervals.  However, these techniques are typically 

complex and may not allow the decision maker to 

easily conduct extensive what-if analysis. This 

paper will demonstrate the use of simulation to 

study the tradeoff between cost and availability. 

  

Case Study: Ground Vehicles in Storage 
The U.S. government possesses numerous ground 

vehicles which are in “storage,” yet must be 

maintained in a state such that they could be issued 

for operations within a matter of hours to meet 

contingency requirements. This unique storage 

situation required a tailored maintenance plan for 

these vehicles. A simple solution would be to treat 

these vehicles as if they were in an operational 

state. However, this would be wasteful because 

most tasks prescribed in the weekly, monthly, 

annual, etc. were developed for vehicles which are 

operated regularly. There is little value in changing 

the oil for a vehicle which has been in storage for a 

year.  
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After analyzing particular failure modes to 

determine logical maintenance tasks, consulting 

existing references for storing vehicles such as 

MIL-STD 3003 [1], and establishing preliminary 

preventative maintenance (PM) intervals, a discrete 

event simulation was developed to answer the 

following questions:  

1. What is the maintenance cost of these vehicles 

in storage?  

2. What is the expected operational availability 

of these vehicles?  

3. How much labor and materiel are required? 

This includes requirements for PM, corrective 

maintenance (CM), and periodic issue and 

receipt of vehicles to operational units.  

4. What would be the cost to achieve higher 

operational availability? 

In addition to modeling the existing storage 

location with both current and possible future 

maintenance policies, the decision-maker also 

wanted to evaluate the potential costs of two other 

storage scenarios at an overseas location. This 

resulted in models for four scenarios. Each scenario 

had the same basic structure as shown in Figure 1. 

 

 
Figure 1: A basic overview of the model structure 

MODELING AND SIMULATION APPROACH  
Modeling and simulation (M&S) broadly refers to 

representing a system or process, followed by 

experimentation on the model in order to solve 

technical and managerial problems.  In some 

applications M&S allows analysis of systems 

which are too complex to solve analytically.  M&S 

further provides the capability to easily perform 

what-if analysis, once the model has been 

validated. The M&S process includes defining, 

designing and building the actual model, designing 

the applicable experiments to be conducted, 

collecting and analyzing required input data, model 

construction, validation, experimentation and 

analysis of model results. 

M&S is frequently utilized in order to analyze 

complex systems, defined as a set of related 

elements within a stated boundary. Sufficiently 

complex systems are difficult to analyze without 

utilizing tools such as M&S due to several 

behavioral characteristics. In this case, each 

preventive maintenance event impacted availability 

in a different way. Additionally, the interactions 

between preventive maintenance interval length, 

multiple queues, labor constraints, and availability 

made analytical computation impractical.  

Discrete event simulation is one method in order 

to analyze such complex systems and is well suited 

to supply chain, manufacturing and other process-

focused problem domains. Discrete event 

simulation represents a system as a discrete 

sequence of events in time. Mathematically, the 

approach utilizes queuing theory and probability 

distributions to represent random processes.  

The steps to conducting a discrete event 

simulation study could be described as follows: 

1. Establish Assumptions and Gather Data 

2. Consolidate Model Inputs  

3. Develop Model Structure 

4. Determine the Number of Replications 

Necessary 

5. Validate Model Structure and Preliminary 

Outputs 

6. Conduct Sensitivity Analysis 
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7. Compare Final Results 

These steps will be explained in detail as applied to 

our particular case of ground vehicles in storage. 

 

Establish Assumptions and Gather Data  
As with any analysis, it is necessary to define 

some concepts and assumptions to establish a 

framework. To conduct this simulation, the 

following assumptions were developed to establish 

the analysis boundaries. The framework provides 

the context for identifying materiel, defining 

required tasks, and quantifying time and cost in 

order to model and quantifiably measure 

performance of each model scenario or 

maintenance strategy. For the sake of brevity, not 

all the assumptions utilized are discussed here.  

No cost-effective maintenance plan can keep a 

fleet of vehicles 100% ready. Due to the 

probabilistic nature of material degradation and 

imperfect abilities to observe some conditions, as 

soon as PM is completed, there is some possibility 

that the system degrades below Fully Mission 

Capable (FMC). With this in mind, preservations 

and maintenance actions were developed so as to 

achieve an availability of approximately 90%. This 

means that if the vehicles in storage were brought 

out of storage for issue to units, at least 90% would 

be FMC and up to 10% may require some 

corrective maintenance.  

It was assumed that all materiel resources are 

readily available to maintenance personnel. 

Although simulation has the capability to easily 

assess the impact of materiel resource limitations, 

labor constraints were the only restrictions 

considered in this model. 

In this case, three years of vehicle maintenance 

data was used to determine the most common 

failure modes and develop estimates of failure 

rates. The team also gained access to the 

maintenance database in order to drill down into 

specific maintenance actions by vehicle serial 

number and location as needed. From those efforts, 

top degraders were developed and analyzed for 

applicability across all variants of vehicles 

analyzed. For many corrective maintenance 

actions, it was difficult to discern whether the 

failures occurred while the vehicles were in storage 

or if they were preexisting upon induction and not 

corrected at that time. To resolve some of these 

uncertainties, interviews of approximately eight 

mechanics and technicians who regularly conduct 

maintenance on these vehicles were also conducted 

at the vehicle storage location. These interviews 

further ensured that the analysis team firmly 

understood the process to be modeled, and allowed 

buy-in to be obtained and maintained throughout 

the analysis. 

 

Consolidate Model Inputs 
The model utilized numerous inputs. Some of 

these were provided by process owners, while 

others were developed by analyzing failure data, 

maintenance manuals, or estimations provided by 

subject matter experts. These model inputs 

included the following: 

 Vehicle quantities 

 Preliminary PM intervals 

 Existing quantities of personnel for each of 

eight labor categories 

 Hourly rates for each labor category 

 Additional semi-fixed costs per person for 

overseas locations (housing, etc.) 

 Process times or distributions for 

o PM actions 

o CM actions 

o Data entry 

o Inventory management 

o Supervisory actions 

 Itemized materiel costs for PM and CM 

 Failure rates in storage (for both indoor and 

outdoor storage) 

 Work schedules for each location 

 Frequency, vehicle quantity, and duration of 

periodic operations 
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Develop Model Structure 
Simulation software packages implement queuing 

theory utilizing varying nomenclature or structural 

elements that form the model. However, the 

underlying mathematical theory holds regardless of 

the specific software package utilized. Within 

Arena discrete event simulation software, there are 

several types of model structure elements which 

were utilized in the simulation. First, there are 

entities. Entities are the elements which flow 

through the model, may change status, may affect 

other entities, and affect the output metrics of the 

model. Kelton describes entities as the “players” of 

the simulation [2]. Another element within Arena is 

attributes, the properties of entities which define 

states. For instance, whether an entity is in an “up” 

or “down” status would typically be captured by 

use of an attribute. Another model element is 

variables, which are global values which may be 

used by the model in various ways. Another model 

element is resources, which are elements which are 

consumed or utilized when entities undergo various 

processes. Resources are typically used to model 

labor or materiel used during processes. Lastly, 

queues are areas where entities may build up if they 

are unable to move on to the next process for some 

reason. This may be due to lack of resources or 

limited capacities in the next process. Queues are 

automatically generated within Arena for most 

constrained processes. For more information 

describing modeling and simulation within Arena, 

see reference [2]. 

The model was structured with the vehicles as 

entities. Personnel and materiel were modeled 

using resources. Multiple distributions were used to 

model each process time to accommodate the 

different times required for different variants, 

statuses, and environments of vehicle.  

At time zero of each replication, the appropriate 

amount of vehicles for each variant enters the 

model. Each of these vehicles is assigned attributes 

which define the variant and storage status. In the 

next step, each vehicle is assigned a unique serial 

number, a future date at which each of its PM 

actions is due (based on staggering all the vehicles 

throughout each interval) and a future date on 

which a failure will occur for that vehicle based on 

the failure rate for that variant, status, and 

environment using the exponential distribution for 

time between failures. Each vehicle then remains in 

a hold until a PM comes due. When a failure occurs, 

the vehicle is pulled from the hold, assigned a 

“failed” attribute, and then put back into the hold. 

Each vehicle can incur multiple failures at a time. 

The failure remains on the vehicle until it is 

identified during a PM and corrected during CM. 

When a PM action comes due for that vehicle, it 

goes through several modules which determine 

exactly which PM actions are due. If a particular 

PM is due, it goes through the appropriate 

processes which accrue labor hours for the 

appropriate resources. Each process within the 

model utilized the specific process time defined for 

that variant, status, and environment. The model 

also includes logic which diverts vehicles from 

certain processes which are not applicable in 

certain scenarios (i.e. particular locations which 

lacked certain resources). 

After PM processes are completed for a given 

vehicle, the vehicle progresses to the CM 

processes. If no failures were identified, the vehicle 

exits the CM processes and goes back to the hold. 

If failures were identified, it continues through the 

CM processes, sometimes multiple times if 

multiple failures are identified on a vehicle. Once 

all failures on a vehicle have been corrected, the 

availability variable for the model is updated.  

After CM, the model checks whether vehicles are 

needed for an operation. If vehicles are needed for 

an operation, they are routed to the operations area. 

The vehicles receive a Limited Technical 

Inspection (LTI) and associated processes then go 

into the operations queue until the necessary 

amount of vehicles are collected. Once the 

appropriate amount of vehicles are collected, the 

group of vehicles goes on the operations process for 

the duration specified for that instance based on the 

input distribution. After vehicles complete the 
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operation, they again receive an LTI and associated 

processes, then go back into the hold for PM or 

failures. 

There are also “logical entities” and associated 

modules defined within the model to screen for 

PMs, screen for failures, collect statistics, and 

record model outputs.  

Determine the Number of Replications 
Necessary 

To obtain results with the appropriate resolution 

for the application, numerous replications are 

typically necessary when conducting simulation. 

These replications could be viewed as observations 

in a sample being taken from the population. For 

each metric of interest, such as cost or availability, 

the results reported are typically the mean values 

from all the replications conducted. However, each 

replication results in a slightly different value. If the 

variation across these replications is large, there is 

uncertainty in the metric of interest, hence the 

necessity to determine the number of replications 

(sample size) necessary to achieve sufficiently 

precise results. “Sufficiently precise,” specifies the 

level of detail necessary for the given metric of 

interest. For instance, there is probably no reason to 

calculate the mean availability down to 6 decimal 

points. If we know availability is 90.9% +/- 0.25%, 

this is probably sufficiently precise for this metric. 

This variation is termed the acceptable error. So if 

results have been obtained for 20 replications of a 

model have been performed, how does one 

determine whether 20 is enough?   

The confidence interval for an estimation of a 

metric is often given with an equation using the 

standard normal distribution. However, the use of 

the normal distribution for determining the 

confidence interval from a sample is only valid if 

the population standard deviation is known or the 

sample size is large, which is often not the case. 

Sometimes the population standard deviation is 

assumed to be equal to the sample standard 

deviation, but this assumption may be avoided by 

using the Student’s t distribution, which does not 

require a known population standard deviation. 

Compared to the normal distribution, the Student’s 

t distribution is also shaped like a bell curve, but it 

has fatter tails than the normal distribution. As the 

degrees of freedom (dof) or sample size increases, 

the tails get thinner to the point that once the sample 

size is over 100, the Student’s t distribution is 

approximately equal to the normal distribution, so 

use of the normal distribution could be valid for 

these large samples. Some sources say that a 

sample size of 30 is sufficient for this purpose, but 

it depends on the level of precision required. 

Because the normal distribution could induce 

miscalculations when the sample size is small, it is 

recommended to always use the t distribution, 

especially if conducting the calculations in Excel or 

some other automated tool. See reference [3] for 

more about the t distribution. Using the Student’s t 

distribution, the confidence interval will be  

 
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = �̅�  ± 𝑠𝑀𝑡𝑑𝑜𝑓,∝/2  

 

Where  

 

�̅�  = mean of the sample (for all replications) 

𝑠𝑀= standard error of the mean 

𝑡𝑑𝑜𝑓,∝/2= value from t distribution, given ∝ and dof 

∝ = 1 – (confidence level) 

dof = n – 1 

n = number of replications (sample size) 

 

While some simulation software suites 

automatically calculate 𝑠𝑀, the standard error of the 

mean, not all programs do this. If not, it can be 

calculated using: 

 
𝑠𝑀 = 𝑠/√𝑛 

 

Where  

 

s = sample standard deviation, and  

n = number of replications (sample size) 

 

In the model developed, availability is the metric 

of interest which was determined to have the most 
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variation so it was analyzed to determine the 

number of replications necessary. Additionally, 

multiple scenarios were being modeled and the 

particular scenario with the smallest population size 

was selected for this step. A smaller population size 

will result in larger variation due to the higher 

probability of extreme mean values. To 

conceptualize this in plain terms, if you are 

repeatedly flipping a coin, a smaller number of flips 

is more likely to result in an extreme value (for 

instance all heads) than a larger number of flips. 

The probability of getting all heads in five flips is 

much more likely to occur than getting all heads on 

20 flips. For this reason, the model scenario with 

the smaller population was selected to determine 

the number of replications needed.  

Results from several iterations of simulations are 

presented in the tables below. A 95% confidence 

level that the mean availability is within 0.25% was 

chosen as the level of precision desired. In other 

words, if the model predicts 90.5% availability, 

continued replications of the model may result in a 

mean availability as low as 90.25% or as high as 

90.75%. Values in the following descriptions are 

shown as decimals rather than percentages to avoid 

possible misinterpretations.  

 

 
Table 1: Means, standard errors, and confidence 

interval half widths for various quantities of replications 
 

Suppose we had initially conducted 20 

replications. At that point, the mean was 0.9056 and 

the standard error of the mean was 0.0012. At a 

95% confidence level (∝ = 0.05 or ∝/2 = 0.025), 

with 19 degrees of freedom (n-1), we can look up 

in a table (or calculate in an Excel formula) that 

𝑡𝑑𝑜𝑓,∝/2= 1.729. Substituting the values for t and �̅�  = 

0.9056 into the equation, we calculate the 

confidence interval. Using this calculation, we can 

say at a 95% confidence level that the mean is 

between 0.9031 and 0.9082, or a confidence 

interval half-width of 0.0101. This range is outside 

our desired precision of 0.0025, so more 

replications would be necessary to achieve the 

desired precision in our results. At this point, we 

would run the model as many more times as 

necessary to achieve the confidence interval that is 

sufficiently precise. The figure below shows the 

means and confidence intervals for a range of 

replication quantities on the model described. 

 

 
Figure 2: Means, confidence interval half widths, and 

acceptable error for various quantities of replications 

Number of 

Replications

Mean 

Availability

Standard 

Error of 

the Mean

Confidence 

Interval 

Half Width

3 0.9090 0.0031 0.01474

5 0.9084 0.0034 0.01027

10 0.9052 0.0033 0.01012

20 0.9056 0.0012 0.00283

25 0.9055 0.0010 0.00250

30 0.9049 0.0009 0.00210

50 0.9050 0.0007 0.00160

70 0.9057 0.0006 0.00140

150 0.9056 0.0004 0.00095
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In this particular case, it was determined that 25 

replications will yield a confidence interval that is 

within the desired precision. For more information 

on determining the number of replications needed, 

see references [4] and [5]. 

It is important to keep in mind that this does not 

take into account possible errors in the input 

parameters or the structure of the model. In the case 

of modeling and simulation, the confidence interval 

merely means that if more instances of the model 

were replicated, the mean from all replications 

would not be likely to shift outside that interval. 

This is an important distinction that is often 

misinterpreted when model projections are 

presented with a confidence interval. Additionally, 

projections from the model assume the parameters 

are accurate. If for instance, the failure rates double 

due to increased humidity in the environment, the 

real world performance would not be likely to fall 

within the predicted confidence interval.  

The value of models is the insight into 

relationships in the performance of the system with 

regard to what is important and how it influences 

performance of the processes being modeled. In 

that sense, modeling is best understood as a 

decision support tool providing a quantifiable 

understanding of how processes and systems 

operate. Model predictive value can be improved 

by refining the model using comparisons of the 

model output to actual data collected through a 

validation and verification process. In short, a 

model based on past performance does not 

guarantee future results. 

 

Validate Model Structure and Preliminary 
Results 

To validate the structure of the model, several In-

Process-Reviews were conducted to ensure the 

logic was developed accurately. Additionally, at the 

beginning of the project, the team developing the 

model had visited all maintenance sites being 

modeled to gain an understanding of the processes 

in place. Additionally, further interviews of 

maintenance supervisors were conducted after the 

model was built. Upon development of preliminary 

results, additional In-Process-Reviews were 

conducted to ensure the resulting behavior of the 

model matched what would be expected by the 

process owners and stakeholders.  

After maintenance policy decisions are made and 

new procedures are implemented, there will likely 

be opportunities to further assess the validity of the 

model. It could also likely be improved based on 

revised information. Data should be collected to 

validate and further refine the input parameters, 

particularly in areas where robust data may not 

have been available at the time of model 

development. This data could be collected by the 

personnel performing maintenance, then used in the 

model to further improve its validity for future use 

when conditions change, other scenarios are 

necessary, or other maintenance policies are 

considered. 

 

Conduct Sensitivity Analysis 
Sensitivity analysis is the process used to 

determine how changes to input values would 

likely affect output values of a model. This could 

be useful to know for a variety of reasons. For 

instance, some of the input values may change over 

time. Predicting the expected system performance 

due to these changes would have obvious benefits. 

Additionally, in cases where input parameters are 

estimated due to incomplete data, it would be useful 

to know how imprecise estimations of different 

input parameters would affect the model results.  

There are several possible methodologies 

commonly utilized to conduct a sensitivity analysis. 

The simplest form is a One-At-a-Time (OAT) 

approach. In this case, one input parameter is varied 

at a time while the others are held constant. The 

changes to results are then observed to determine 

the sensitivity of the model to each of the input 

parameters. Several Design of Experiment (DoE) 

approaches to include full factorial and Taguchi 

designs can be used. Full factorial designs vary all 

possible combinations of all factors at many levels, 
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while Taguchi designs fraction the levels of each 

factor required to reduce the required number of 

trials or experiments.  

The advantage of the OAT approach is that is does 

not require many trials and results are fairly 

straightforward to interpret. The disadvantage of 

the OAT approach is that it does not capture 

interaction affects. For example, a given output 

may not be affected by either of two input 

parameters changing by themselves, but the output 

may be affected when multiple factors change at the 

same time.  

The advantage of DoE approaches are that they 

will capture interaction affects if conducted 

properly. However, the disadvantages are that they 

require significantly more trials and the results 

require more sophisticated statistical methods to 

interpret (Analysis of Variance). For a full factorial 

DoE approach, the number of trials required is 

given by kn, where k is the number factors 

examined and n is the number of levels examined 

for each factor. A sensitivity analysis examining 

three factors at five levels would require 35, or 243 

trials for each output variable examined. Each trial 

requires multiple replications as described 

previously, so the time required to perform a full 

factorial DoE approach is often significant.  

In the sensitivity analysis for this model, the OAT 

approach was utilized. Three factors were 

examined: the PM interval lengths, materiel costs 

of all maintenance actions, and the process times. 

The interval lengths were examined at seven levels 

and the other parameters were examined at three 

levels. The effect of these changes were observed 

on both availability and total cost (although not 

shown in this report for brevity).  

 

COMPARE RESULTS 
After performing all the steps previously 

described, the results from the models of each 

scenario were analyzed and compared. These 

results included total costs for PM, CM, and 

operational issue; costs per vehicle for each of those 

metrics (because different scenarios had different 

vehicle quantities); labor hours for each category 

(total and per vehicle); and the recommended 

personnel staffing levels for each scenario based on 

the labor hour requirements and avoidance of 

bottlenecks negatively affecting availability. 

For the location with existing policies already in 

place, the model showed that significant savings 

per vehicle could be achieved by extending all the 

existing PM intervals. Additionally, the simulation 

gives stakeholders confidence that extending the 

PM intervals will not degrade operational 

availability below desired levels. The intervals 

were extended only to the point that the availability 

target of 90% could still be achieved. Some of the 

results from these simulations are shown in the 

figures below. 

 

 
Figure 3: Annual costs per vehicle modeled for the 

current state and future state 
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Figure 4: Annual labor requirements per vehicle 

modeled for the current state and future state 
 

A benefit of conducting sensitivity analysis for 

both cost and availability is that these outputs may 

be plotted to observe their relationship to each 

other. It is commonly understood that maintaining 

a higher level of availability costs more, but the 

quantification of this trend can be difficult. The 

simulations conducted for the sensitivity analysis 

enable development of this cost curve. Note that the 

costs increase much more rapidly as availability 

goes beyond 90%. The availability curve will 

continued to approach 100%, but will theoretically 

never reach it. This is because no matter how often 

you inspect or PM a vehicle there is always some 

possibility of a failure occurring shortly after that. 

 

 
Figure 5: The tradeoff between cost and availability 

derived from simulation 

MODEL LIMITATIONS 
All models are an abstraction of the underlying 

system, thus an error (although small) will always 

exist between the true system and the model. The 

model structure should be periodically reviewed, 

and any additional information that becomes 

available can be integrated. Additionally, if 

sufficient information is available, model 

assumptions can be further relaxed. 

Military field data poses significant challenges 

due to likely error within the data sets, as well as 

the limited amount of information that is typically 

captured as part of a work order. The vehicles in 

storage should be closely monitored as new 

processes derived from the M&S analysis are 

implemented. Monitoring will allow data to be 

collected measuring the effectiveness and 

efficiency of these new processes as well as 

validate the availability predictions of the future 

state. Additionally, the model could be improved 

by further refining some of the input data. In 

particular, some of the failure rates were estimated 

using anecdotal data due to lack of this information 

in the maintenance database.  

 

CONCLUSION 
Ultimately, every military vehicle program strives 

for additional availability at a lower cost. Managers 

need to make decisions about budgets, manpower, 

and maintenance policies which affect the 

availability of their systems. While analytical 

solutions can often yield reasonable estimates for 

certain manpower or cost problems, modeling and 

simulation provides a way to solve problems which 

are too complex to solve analytically. It provides a 

way to assess possible courses of action without 

spending resources on pilot studies to physically 

test alternative policies.  
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